
arista.com

White Paper

Rapid Automated Indication of Link-Loss

Fast recovery of failures is becoming a hot topic of discussion for many of today’s Big Data applications such as Hadoop,

HBase, Cassandra, MongoDB, MySQL, MemcacheD and other data intensive distributed applications. Many of these

applications do not use sophisticated and integrated failover mechanisms and as a result utilize heartbeat timeouts or

general communication stack timers to detect and recover from node failures.

Arista’s Rapid Automated Indication of Link-Loss (RAIL) feature leverages the switch intelligence to proxy send TCP

Session Resets (RST) or ICMP Destination Unreachable messages (in the case of any non-TCP packet) for nodes that

have failed or have lost link connectivity to the switch. This unique Arista EOS feature can help facilitate dramatically

faster failover times for distributed datacenter applications, which are either batch or stream oriented and are sensitive

to node failures.

http://www.arista.com/en/

arista.comarista.com

White Paper

TCP Session Reset
The majority of data center applications today are based on connection oriented TCP protocol communication due to its integrated
data delivery guarantees, loss recovery and congestion management mechanisms. TCP relieves the application of these functions
and consequently obscures them. The TCP protocol specification includes a method to immediately terminate a TCP connection
when it is no longer needed or valid. When a host receives a TCP session reset (RST), it stops sending and receiving data for that
connection and closes the port. This has two main benefits: it frees up kernel resources on the host and allows the application to
quickly recover from failures by establishing new TCP connections to alternate systems if they exist. If a TCP RST is not received, the
session remains open and in a stalled state waiting for either TCP or application timeouts to expire, increasing failover times of the
application. Typical TCP session timeouts are in the 13 to 30 minute range (in the absence of an application-specified TCP timeout),
as per RFC1122. With RAIL enabled, failure recovery times go from minutes down to just a few milliseconds or less.

TCP Session Reset
Some datacenter applications rely on connectionless or UDP based communication between systems. UDP is often employed
when latency, efficient reception by multiple systems and bandwidth are of primary concern. However, UDP does not offer any data
protection or bandwidth management mechanisms that are associated with TCP communications. Consequently, the application is
responsible for these functions. In the case of a failure, an ICMP Destination Unreachable message can be generated to the sending
host to allow the application to choose another target system to facilitate fast recovery.

Arista EOS RAIL (Rapid Automated Indication of Link-Loss)
To support the proxy sending of either TCP or ICMP Destination Unreachable messages for directly attached servers, the Arista
switch is configured to monitor a subnet or group of subnets. For this the switch is set as the default gateway for each server that is
directly connected. If an interface (configured to be monitored) transitions to the down state:

• An entry is made on the switch supervisor (CPU) to reject packets to this destination (discovered when the link was in the
up state)

• An entry is programed into the switching FIB (Forwarding Information Base) table that redirects frames with the associated
MAC address to the supervisor (CPU)

• When the supervisor receives a matching packet it will send back to the originating host(s) either a TCP RST or an ICMP
unreachable message for both UDP and ICMP packets

• The switch continues to operate in the “proxying” state for a user configured time period

• Once the sending host receives the RST or ICMP unreachable the application can take immediate action to failover instead
of waiting for lengthy TCP or application timers to expire.

Once a server is discovered, the four states RAIL supports are Up, Down, Proxying and Inactive:

Table 1: RAIL Server States

RAIL Server State Description

Up Server is up

Proxying Link down was detected and server is being proxied

Down Link down was detected and proxy is not enabled

Inactive Server goes to Inactive state if:

• The MAC entry or ARP entry of the server gets deleted

• The RAIL configured interface goes down and the proxy/down
lifetime is complete.

http://www.arista.com/en/
http://www.arista.com/en/

arista.comarista.com

White Paper

RAIL Configuration
Prior to configuration of the RAIL feature ensure that the switch is either an Arista 7050 or 7150 Series Datacenter switch and it is
configured as the default gateway for the subnet being monitored. This ensures that IP addresses can be mapped to MAC addresses
and physical ports.

Note that RAIL in conjunction with VMs in not currently supported.

From the switch CLI:

switch(config)# monitor server-failure

switch(config-server-failure)# no shutdown

switch(config-server-failure)# proxy

switch(config-server-failure)# proxy lifetime <1-10080> *How long to proxy

switch(config-server-failure)# network <subnet/mask>

switch(config-server-failure)# interface <name> *Can be a single port or port-channel

Feature verification and show commands:

switch#show monitor server-failure

Server-failure monitor is enabled.

Proxy service: enabled

Proxy lifetime: 10 minutes

Networks being monitored: 3

 10.1.0.0/16 : 3 servers

 132.23.23.0/24 : 1 servers

 44.11.11.0/24 : 0 servers

switch#show monitor server-failure ?

 history History of failed servers

 servers Servers being monitored that are active

 > Redirect output to URL

 >> Append redirected output to URL

 | Output modifiers

 <cr>

Check the recent history of server failures:

switch# show monitor server-failure history

Total server failures: 4

Server IP Server MAC Interface Last Failed

--------- ----------------- ----------- -------------------

10.1.67.92 01:22:ab:cd:ee:ff Ethernet17 2013-02-02 11:26:22

44.11.11.7 ad:3e:5f:dd:64:cf Ethernet23 2013-02-10 00:07:56

10.1.1.1 01:22:df:42:78:cd Port-Channel6 2013-02-09 19:36:09

10.1.8.13 01:33:df:ee:39:91 Port-Channel5 2013-02-10 00:03:39

http://www.arista.com/en/
http://www.arista.com/en/

arista.comarista.com

White Paper

Check the status of servers being monitored that are active:

switch#show monitor server-failure servers

Active servers: 4

Server IP Server MAC Interface State Last Failed

---------- ----------------- -------------- --------- -----------

44.11.11.7 ad:3e:5f:dd:64:cf Ethernet23 down 0:03:21 ago

10.1.1.1 01:22:df:42:78:cd Port-Channel6 up 4:35:08 ago

10.1.8.13 01:33:df:ee:39:91 Port-Channel5 proxying 0:07:38 ago

132.23.23.1 00:11:aa:bb:32:ad Ethernet1 up never

Collect detailed information on server-failure servers:

switch#show monitor server-failure servers ?

 A.B.C.D Show server with IP address

 all Show all servers

inactive Inactive servers

 proxying Servers being proxied

 > Redirect output to URL

 >> Append redirected output to URL

 | Output modifiers

 <cr>

Show the detailed state of a single server:

switch#show monitor server-failure servers 44.11.11.7

Server information:

 Server IP Address : 44.11.11.7

 MAC Address : ad:3e:5f:dd:64:cf

 Current state : down

 Interface : Ethernet23

 Last Discovered : 2013-01-06 06:47:39

 Last Failed : 2013-02-10 00:07:56

 Last Proxied : 2013-02-10 00:08:33

 Last Inactive : 2013-02-09 23:52:21

 Number of times failed : 3

 Number of times proxied : 1

 Number of times inactive : 18

switch#show monitor server-failure servers all

Total servers monitored: 5

Server IP Server MAC Interface State Last Failed

---------- ----------------- ------------ --------- -----------

10.1.67.92 01:22:ab:cd:ee:ff Ethernet17 inactive 7 days, 12:47:48 ago

44.11.11.7 ad:3e:5f:dd:64:cf Ethernet23 down 0:06:14 ago

10.1.1.1 01:22:df:42:78:cd Port-Channel6 up 4:38:01 ago

10.1.8.13 01:33:df:ee:39:91 Port-Channel5 proxying 0:10:31 ago

132.23.23.1 00:11:aa:bb:32:ad Ethernet1 up never

http://www.arista.com/en/
http://www.arista.com/en/

arista.comarista.com

White Paper

Show servers that are currently inactive:

switch#show monitor server-failure servers inactive

Inactive servers: 1

Server IP Server MAC Interface State Last Failed

---------- ----------------- ------------ -------- -------------

10.1.67.92 01:22:ab:cd:ee:ff Ethernet17 inactive 7 days, 12:48:06 ago

Show servers currently being proxied:

switch#show monitor server-failure servers proxying

Active failed servers being proxied: 1

Server IP Server MAC Interface State Last Failed

---------- ----------------- -------------- -------- ------------

10.1.8.13 01:33:df:ee:39:91 Port-Channel5 proxying 0:11:08 ago

RAIL Deployment Scenario with Apache HBase
HBase is an open source, massively scalable, NoSQL distributed database based on Google’s BigTable that is commonly used in
conjunction with Hadoop’s HDFS (Hadoop Distributed File System). HDFS itself is a “logical” filesystem that runs on top of an
operating systems native filesystem (such as ext4). The largest HBase clusters can scale to over 1000 servers with >1PB of storage.
HBase is very latency sensitive as it offers extremely fast writes (1-3ms, 1-10k writes/sec/node) and reads (<1-3ms in memory cache,
10-30ms on disk, 10-40k reads/sec/node). The HBase architecture consists of Clients, ZooKeeper, HBase Master, RegionServers and
HDFS data nodes. It is common to run RegionServers on all HDFS data nodes. The architecture is logically connected as shown
below:

HBase utilizes a Write Ahead Log (WAL) and considers a write to the database complete when the operation is successfully logged to
the WAL in the form of an HDFS SequenceFile. This allows data to be recovered by an alternate RegionServer in the event of a failure.
The data is then copied to a MemStore (in system RAM) and eventually (once a threshold is met) flushed to an HFile for long-term
storage and access. This is important to understand from a recovery perspective.

The HBase read/write operations follow the same basic pattern of 4 independent TCP connections:
 1. The Client connects to ZooKeeper quorum to determine the “-ROOT-“ RegionServer
 2. The Client connects to the RegionServer and queries for the correct .META. server
 3. The Client connects to the .META RegionServer to find the correct RegionServer for the table of interest
 4. The Client connects to and executes the PUT/GET on the targeted Region

Figure 1: Apache HBase – Image courtesy of Cloudera

http://www.arista.com/en/
http://www.arista.com/en/

arista.comarista.comarista.com

Santa Clara—Corporate Headquarters
5453 Great America Parkway,
Santa Clara, CA 95054

Phone: +1-408-547-5500
Fax: +1-408-538-8920
Email: info@arista.com

White Paper

Ireland—International Headquarters
3130 Atlantic Avenue
Westpark Business Campus
Shannon, Co. Clare
Ireland

Vancouver—R&D Office
9200 Glenlyon Pkwy, Unit 300
Burnaby, British Columbia
Canada V5J 5J8

San Francisco—R&D and Sales Office
1390 Market Street, Suite 800
San Francisco, CA 94102

India—R&D Office
Global Tech Park, Tower A & B, 11th Floor
Marathahalli Outer Ring Road
Devarabeesanahalli Village, Varthur Hobli
Bangalore, India 560103

Singapore—APAC Administrative Office
9 Temasek Boulevard
#29-01, Suntec Tower Two
Singapore 038989

Nashua—R&D Office
10 Tara Boulevard
Nashua, NH 03062

Copyright © 2016 Arista Networks, Inc. All rights reserved. CloudVision, and EOS are registered trademarks and Arista Networks
is a trademark of Arista Networks, Inc. All other company names are trademarks of their respective holders. Information in this
document is subject to change without notice. Certain features may not yet be available. Arista Networks, Inc. assumes no
responsibility for any errors that may appear in this document. 05/13

* Each RegionServer utilizes the HDFS Client to write to the filesystem through TCP pipelining and offers read accessibility through
its block replication/redundancy architecture *

It’s important to note that all of these connections are TCP based utilizing custom HBase RPC calls and HDFS read/write operations
and are therefore subject to stalled TCP connections during node failures. These stalled sessions can cause serious access latency
issues with HBase and associated client applications. This is where Arista’s RAIL functionality can facilitate fast failover and recovery
times. In the case of a node failing while it is in the HDFS pipelining process, the system will stall and wait for timers to expire; this
typically takes 30-60 seconds. If the RAIL feature is enabled, a TCP RST will be sent for all known (by session packets received by
the switch) connections that were on the now dead node. This causes a timely reaction by the connecting node and forces an
immediate fail-fast.

Arista RAIL in Action

The Arista RAIL feature can be applied generally in the datacenter on systems that are clustered, provide redundancy options and/or
are hosting time sensitive applications to meet the high demands found in today’s datacenters.

Conclusion
The Arista RAIL feature accelerates application recovery by proxying the server connection and closing connections. This feature
saves time and improves job performance for Hadoop and distributed computer intensive applications.

Figure 2: Arista RAIL in action

http://www.arista.com/en/
http://www.arista.com/en/
https://www.facebook.com/AristaNW
https://twitter.com/@AristaNetworks
https://www.linkedin.com/company/arista-networks-inc
https://www.youtube.com/user/AristaNetworks
http://www.arista.com/en/

