
arista.com

White Paper

Why Big Data Needs Big Buffer Switches
ANDREAS BECHTOLSHEIM, LINCOLN DALE, HUGH HOLBROOK, AND ANG LI

Today’s cloud data applications, including Hadoop, Big Data, Search or Storage, are distributed applications 

running on server clusters with many-to-many communication patterns. The key to achieving predictable 

performance for these distributed applications is to provide consistent network bandwidth and latency to the 

various traffic flows since in most cases it is the slowest flow or query completing last that determines the overall 

performance. 

In this paper, we demonstrate that without sufficient packet buffer memory in the switches, network bandwidth 

is allocated grossly unfairly among different flows, resulting in unpredictable completion times for distributed 

applications. This is the result of packets on certain flows getting dropped more often than on other flows, the 

so-called TCP/IP Bandwidth Capture effect. We present simulation data that show that in heavily loaded networks, 

query completion times are dramatically shorter with big buffer switches compared to small buffer switches.
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Packet Buffers In Cloud Network Switches
The performance of distributed Big Data applications depends critically on the packet buffer size of the datacenter switches in 
the network fabric. In this paper we compare the performance of both individual switches and network fabrics built with a leaf-
spine architecture with switches of various packet buffer sizes under various levels of network load. The results show a dramatic 
improvement at the application level under load when using big buffer switches.

There are two types of switch chips commonly used in datacenter switches. The first type uses on-chip shared SRAM buffers, which 
today are typically 12 MBytes of packet buffer memory for 128 10G ports, or approximately 100 KBytes per 10GigE port. The second 
type of switch chip uses external DRAM buffer, which typically provides 100 MBytes of packet buffer per 10GigE port, or 1000X more 
than the SRAM switch. At Arista, we build datacenter switches with both types of silicon. The small buffer switch silicon is used in 
the Arista 7050X, 7250X, 7060X, 7260X and 7300X/7320X switches, while the large buffer switch silicon is used in the Arista 7048T, 
7280E/7280R, and 7500E/7500R switches.

Both types of switch product lines have been widely deployed. In this paper we will discuss how the difference in buffer size affects 
application performance in distributed cloud applications.

A Simple Rack-Top Switch Model
To understand the interaction of multiple TCP/IP flows and switch buffer size it helps to start with devices attached to a single switch. 
For this, we assumed 20 servers connected with 10 Gigabit Ethernet to a rack top switch with one 40 Gigabit Ethernet uplink. Each 
server has 10 threads, resulting in a total of 200 flows (20 servers x 10 flows/server) sharing the 40G uplink (5:1 over subscription). 
The question is what bandwidth is seen by each flow.
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We modeled the network shown in Figure 1 with the NS-2 network simulator using standard TCP/IP settings using two types of 
switches: (1) a large buffer switch with 256 MBytes shared packet buffer and perfect per-flow queuing behavior, and (2) a small 
buffer switch with 4 MBytes of shared packet buffer. The resulting bandwidth per flow is shown in Figure 2 below.

As can be seen, the ideal large buffer switch delivers 200 Mbps per flow. With the small buffer switch however, the bandwidth per 
flow is distributed along a Gaussian curve. Roughly half the flows receive more bandwidth than the mean, while the other flows 
receive less bandwidth than what would have been fair, and some flows receive barely any bandwidth at all. The result of this 
unfair bandwidth allocation between different flows is that some flows have an awfully long tail and have a substantially longer 
completion time.

Figure 1: Single switch with 40 Gigabit Ethernet uplink connected with 10Gig to 20 servers with 10 flows each

Figure 2: Distribution of bandwidth across different flows in a small buffer versus big buffer switch.
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The TCP/IP Bandwidth Capture Effect
Why would small buffer switches create such a wide range of bandwidth for different flows? The answer to this is inherent in the 
way TCP/IP works and TCP/IP flows interact when packets are dropped. The TCP/IP protocol relies on ACK packets from the receiver 
to pace the speed of transmission of packets by adjusting the sender bandwidth to the available network bandwidth. If there are 
insufficient buffers in the network, packets are dropped to signal the sender to reduce its rate of packet transmission. 

When many flows pass through a congested switch with limited buffer resources, which packet is dropped and which flow is 
impacted is a function of whether a packet buffer was available in the precise moment when that packet arrived, and is therefore a 
function of chance. TCP flows with packets that are dropped will back off and get less share of the overall network bandwidth, with 
some really “unlucky” flows getting their packets dropped all the time and receiving barely any bandwidth at all. In the meantime, 
the “lucky” flows that by chance have packets arriving when packet buffer space is available do not drop packets and instead of 
slowing down will increase their share of bandwidth. The result is a Poisson-like distribution of bandwidth per flow that can vary 
by more than an order of magnitude between the top 5% and the bottom 5% of flows. We call this behavior the “TCP/IP Bandwidth 
Capture Effect”, meaning in a congested network with limited buffer resources certain flows will capture more bandwidth than other 
flows.

The TCP/IP Bandwidth Capture Effect is conceptually similar to the Ethernet CSMA/CD bandwidth capture effect in shared Ethernet, 
where stations that collide with other stations on the shared LAN keep backing off and as a result receive less bandwidth than other 
stations that were not colliding [7][8]. The Ethernet CSMA/CD bandwidth capture effect was solved with the introduction of full-
duplex Ethernet and Ethernet switches that eliminated the CSMA/CD access method. The TCP/IP Bandwidth Capture Effect can be 
solved by switches that have sufficient buffering such that they don’t cause TCP retransmission timeouts.

Note that the overall throughput of the network is not impacted by the TCP bandwidth capture effect since when certain flows time 
out, other flows will pick up the slack. Thus one does not need large packet buffers to saturate a bottleneck link, assuming sufficient 
number of flows, however that does not say anything about how the bandwidth of the bottleneck link is allocated to the various 
flows. Without sufficient buffering, the allocation of bandwidth will be very much uneven, which can have a very significant impact 
on distributed applications that depend on all flows completing. 

In summary, the TCP/IP Bandwidth Capture Effect is inherent in the way the TCP/IP protocol interacts with networks that have 
insufficient buffer resources and drop packets under load. In contrast, large buffer switches drop virtually no packets, enabling the 
network to provide predictable and fair bandwidth across all flows.

Leaf-Spine Cloud Network Simulation
We next expanded our simulation model to a leaf-spine network consisting of five racks and 20 servers per rack, for a total of 100 
servers. Each server in a rack is connected with 10 GigE to the rack leaf switch (20 per leaf switch, or 200 GBps maximum bandwidth), 
and each leaf switch connects to the spine layer with two 40 GigE ports (2.5:1 oversubscribed). 

We studied the query and flow completion times for distributed applications for various levels of network loading and for different 
buffer sizes in the leaf and spine switches. The detailed results are presented in [1]. Our server and network fabric topology was 
identical to the one used in [2], except we did not stop at 70% network loading but simulated all the way to 95% network load. 

We used the NS3 simulator [3] with TCP NewReno [4] (the official implementation in NS3) with the initial RTO set to 200 msec (the 
standard Linux value). Flow control was disabled.

For the workload, we simulated a dynamic workload for foreground query traffic consisting of each server sending requests to 
n other servers. The background traffic was file transfers between randomly chosen pairs of servers. The exact traffic model is 
described in [1]. 
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Flow Competition Times At Various Network Loads
We found that flow completion times (FCT) increased dramatically for small-buffer switches as the load on the spine increased. At 
95% network loading and 95% flow completion the FCT with small-buffer switches increased to 600 milliseconds. With big buffer 
switches under the same conditions, FCT remained at less than 10 milliseconds, a 60:1 performance advantage.

Query Completion Times As A Function Of Network Load
We found similarly dramatic results for Query Completion Times (QCT). Under 90% network load, and for 90% query completion, the 
small buffer network took more than 1 second. In contrast, under the same loading conditions, the QCT with big buffer switches best 
performance was a mere 20 msec, a 50:1 performance advantage.

In contrast to [2], we found that for spine traffic loads of 90% packet loss at the spine layer is equally disruptive to packet loss at the 
leaf layer. This was not found in [2] because their study did not simulate high traffic load at the spine layer, which did not stress the 
spine switch. 

Figure 3: Flow Completion Times with small and large buffer Switches under various network loads

Figure 4: Query Completion Times with small and large buffer Switches under 90% network load



arista.comarista.com

White Paper

Impact On Real World Applications
The simulations we have run use traffic flows that are common in many Big Data applications. The exact impact of the network on 
application performance of course depends on the actual network communication patterns, network loading, and so on.  

A real-life example of the impact of big packet buffers on application performance is Figure 5 below from DataSift, which replaced 
small buffer legacy GigE switches with the large buffer Arista 7048 switch, dropping application query completion times from 15 
msec to 2.5 msec, a 6X improvement.

The effect that variable network performance can have on large scale web services can be found in [6] which shows the impact of 
the “long tail” of variances in a large cloud compute cluster on the overall task completion time, stretching it to 140 ms (see Table 1 
below).

Figure 5: Average latency seen in a Big Data cluster before and after introducing big buffer switches [5].
http://architects.dzone.com/articles/platform-performance-gains

Table 1: Individual-leaf-request finishing times for a large fan-out service tree (measured from root node of the tree)

50%ile Latency 95%ile Latency 99%ile Latency

One random leaf finishes 1ms 5ms 10ms

95% of all leaf requests finish 12ms 32ms 70ms

100% of all leaf requests finish 40ms 87ms 140ms
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Summary
We presented simulation data that demonstrates that the way TCP/IP interacts with insufficient packet buffers in network switches 
under load leads to gross unfairness in bandwidth allocation among different flows in the network. Flows that experience packet 
drops reduce their data rate and bandwidth consumed, with some flows getting very little if any bandwidth, while other flows 
that experience fewer packet drops receive more than their fair share of the available network bandwidth. We call this the TCP/IP 
Bandwidth Capture Effect.

With a single small-buffer switch, this effect can lead to differences of 10:1 in bandwidth seen per flow. In a network with multiple 
switching tiers, the bandwidth allocation per flow can vary by 100:1. This wide range of bandwidth as seen by different flows can 
lead to highly variable completion times for distributed cloud applications that depend on the all flows or queries to complete. 

In our simulations of a leaf-spine network under heavy load, we have seen query and flow completion times of more than one 
second with small buffer switches, while under the same conditions with large buffer switches the maximum query completion time 
was 20 millisecond, a 50:1 performance advantage with big buffer switches over small buffer switches.

The gap between deep buffer and shallow buffer switches will only continue to widen over time as higher performance storage 
(Flash/SSD), higher performance servers and increase use of TCP offloading occurs within servers/storage over time.

In summary, large buffer switches dramatically improve application performance under high loads. Customers that have deployed 
Hadoop and other Big Data applications, High Performance storage and distributed applications with big buffer switches have seen 
significant performance improvements compared to small buffer switches. 
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