As of EOS 4.22.0F, EVPN all active multihoming is supported as a standardized redundancy solution.  Redundancy

This feature extends the BGP Layer 3 VPN Import/Export and VRF Route Leaking functionality to “default” VRF.

To use IPv6 addresses for VXLAN underlay, there are two different approaches.  The first approach is to make use of

In a Service Provider network, a Provider Edge (PE) device learns VPN paths from remote PEs and uses the Route Target

This feature allows a Data Center (DC) operator to incrementally migrate their VXLAN network from IPv4 to IPv6

As described in the Multi VTEP MLAG TOI, singly connected hosts can lead to suboptimal peer link utilisation. By

In the Centralized Anycast Gateway configuration, the Spines are configured with EVPN IRB and are used as the IP

In the Centralized Anycast Gateway configuration, the Spines are configured with EVPN IRB and are used as the IP

This feature enables support for Macro Segmentation Service (MSS) to insert security devices into the traffic path

Multihoming in EVPN allows a single customer edge (CE) to connect to multiple provider edges (PE or tunnel endpoint). In any multihoming EVPN instance (EVI), for each ethernet segment a designated forwarder is elected using EVPN type 4 Ethernet Segment (ES) routes sent through BGP. In single-active mode, the designated forwarder (DF) is responsible for sending and receiving all traffic. In all-active mode, the DF is only used to determine whether broadcast, unknown

E-Tree is an L2 EVPN service (defined in RFC8317) in which each attachment circuit (AC) is assigned a role of Root or Leaf.

Ethernet VPN (EVPN) is an extension of the BGP protocol introducing a new address family: L2VPN (address family

This feature adds control plane support for inter subnet forwarding between EVPN and IPVPN networks. It also

This feature adds control plane support for inter subnet forwarding between EVPN networks. This support is achieved

This feature is available when configuring Layer2 EVPN or EVPN IRB. As described in RFC7432 section 15

“MLAG Domain Shared Router MAC” is a new mechanism to introduce a new router MAC to be used for MLAG TOR

EVPN VXLAN 4.21.3F

EVPN MPLS VPWS (RFC 8214) provides the ability to forward customer traffic to / from a given attachment circuit (AC)

EOS currently supports EVPN Multicast by setting up PIM tunnels in the underlay with VXLAN as the transport. While this is an efficient delivery mechanism, it requires PIM to be deployed in the underlay. In certain cases, the overheads of provisioning/maintaining the multicast routers and the multicast routing state in the underlay may be significant.

Multihoming in EVPN allows a single customer edge (CE) to connect to multiple provider edges (PE or tunnel endpoint).

In EVPN, an overlay index is a field in type-5 IP Prefix routes that indicates that they should resolve indirectly rather than using resolution information contained in the type-5 route itself. Depending on the type of overlay index, this resolution information may come from type-1 auto discovery or type-2 MAC+IP routes. For this feature the gateway IP address field of the type-5 NLRI is used as the overlay index, which matches the target IPv4 / IPv6 address in the type-2 NLRI.

As described in the L3 EVPN VXLAN Configuration Guide, it is common practice to use Layer 3 EVPN to provide multi

Flexible cross-connect service is an extension of EVPN MPLS Virtual Private Wire Service (VPWS) (RFC 8214). It allows for multiplexing multiple attachment circuits across different Ethernet Segments and physical interfaces into a single EVPN VPWS service tunnel while still providing single-active and all-active multi-homing.

In EOS 4.22.0F, EVPN VXLAN all active multi homing L2 support is available. A customer edge (CE) device can connect to

Ethernet VPN (EVPN) networks normally require some measure of redundancy to reduce or eliminate the impact of outages and maintenance. RFC7432 describes four types of route to be exchanged through EVPN, with a built-in multihoming mechanism for redundancy. Prior to EOS 4.22.0F, MLAG was available as a redundancy option for EVPN with VXLAN, but not multihoming. EVPN multihoming is a multi-vendor standards-based redundancy solution that does not require a dedicated peer link and allows for more flexible configurations than MLAG, supporting peering on a per interface level rather than a per device level. It also supports a mass withdrawal mechanism to minimize traffic loss when a link goes down.

This feature enables support for an EVPN VxLAN control plane in conjunction with Arista’s OpenStack ML2 plugin for

Starting with EOS release 4.22.0F, the EVPN VXLAN L3 Gateway using EVPN IRB supports routing traffic from one IPV6

Starting with EOS release 4.22.0F, the EVPN VXLAN L3 Gateway using EVPN IRB supports routing traffic from IPV6 host to

Starting with EOS release 4.22.0F, the EVPN VXLAN L3 Gateway using EVPN IRB supports routing traffic from one IPV6

In a traditional EVPN VXLAN centralized anycast gateway deployment, multiple L3 VTEPs serve the role of the

Typical Wi Fi networks utilize a single, central Wireless LAN Controller (WLC) to act as a gateway between the

In EVPN deployment with VXLAN underlay when an EVPN type 5 prefix is imported into an IP VRF, the IGP cost of the underlay

EVPN 4.25.2F

Several customers have expressed interest in using IPv6 addresses for VXLAN underlay in their Data Centers (DC). Prior to 4.24.1F, EOS only supported IPv4 addresses for VXLAN underlay, i.e., VTEPs were reachable via IPv4 addresses only.

As of EOS 4.22.0F, EVPN all active multihoming is supported as a standardized redundancy solution. For effective

This solution allows the delivery of customer BUM (Broadcast, Unknown unicast and Multicast) traffic in a VLAN using

This feature provides the ability to interconnect EVPN VXLAN domains. Domains may or may not be within the same data

EVPN VXLAN 4.26.1F

This feature extends the multi-domain EVPN VXLAN feature introduced to support interconnect with EVPN MPLS networks. The following diagram shows a multi-domain deployment with EVPN VXLAN in the data center and EVPN MPLS in the WAN. Note that this is the only supported deployment model, and that an EVPN MPLS network cannot peer with an EVPN MPLS network.

[L2 EVPN] and  [Multicast EVPN IRB] solutions allow for the delivery of customer BUM (Broadcast, Unknown unicast

This solution allows delivery of multicast traffic in an IP VRF using multicast in the underlay network. It builds on

Multicast EVPN IRB solution allows for the delivery of customer BUM (Broadcast, Unknown unicast and Multicast) traffic in L3VPNs using multicast in the underlay network. This document contains only partial information that is new or different for the Multicast EVPN Multiple Underlay Groups solution.

[L2 EVPN] and  [Multicast EVPN IRB] solutions allow for the delivery of customer BUM (Broadcast, Unknown unicast and Multicast) traffic in a L2VPN and L3VPNs respectively using multicast in the underlay network.

PIM External Gateways (PEGs) allow an EVPN overlay multicast network to interface with an external PIM domain. They

Private VLAN is a feature that segregates a regular VLAN broadcast domain while maintaining all ports in the same IP

Arista MLAG supports STP for Layer 2 loop detection. In fact, most customers enable STP in their MLAG(s) to ensure no

Spanning Tree Protocol requires each interface to have a unique port number ranging from 1 through 4095.  Arista STP typically assigns port numbers to port-channel interfaces in the order in which they are configured.

Prior to 4.25.2F, support for BGP PIC was restricted to locally identifiable failures such as link failures. If a

This feature expands Multi Domain EVPN VXLAN to support an Anycast Gateway model as the mechanism for gateway

This feature enables support for migrating from only using VCS as the control plane to only using EVPN as a control

In EVPN, when configuring the member VLANs for a VLAN aware bundle, the existing configuration command only allows

The feature will provide the ability to error disable local interfaces in a BGP VPWS pseudowire when the remote interface is shutdown or whenever we do not receive a response from BGP.