On DCS 7048, DCS 7280E, DCS 7500 and DCS 7500E, prior to EOS 4.14.5, multicast traffic using ingress replication would

The feature enables support for displaying per traffic class counters on ingress interfaces. The feature is

TOI 4.17.0F

This feature provides support for per-interface ingress/egress packet/byte counters for both IPv4 and IPv6.

The Inner IP hashing for MPLSoGRE feature enabled hashing of inner IP source/destination address. With this

TOI 4.17.1F

The DCS 7280E and DCS 7500E platforms are virtual output queue (VOQ) based architectures where there is a VOQ for all

This feature, when enabled, allows NAT to function on traffic traversing between VRFs, over inter-VRF static routes or routes leaked to VRFs other than where they were configured.

The Interface Diagnostics quick action provides you with a fast and efficient way to run interface cycles and cable diagnostics on your campus devices from the Campus Health Overview Dashboard. The devices available are those with a Campus tag, which is automatically assigned to devices configured with the Campus Fabric Studio (L2/L3/EVPN).

You can use the Access Interface Configuration quick action to assign configuration profiles to devices. The guided workflow will display an illustration of device front panels, which you can use to select interfaces from.

You can use the Access Interface Configuration quick action to assign configuration profiles to devices. The guided workflow will display an illustration of device front panels, which you can use to select interfaces from.

One of the reasons why Wi-Fi clients encounter RF issues is non-Wi-Fi interference. All Wi-Fi 6 and above APs can perform interference classification. CloudVision Cognitive Unified Edge (CV-CUE) classifies interference into four categories — Wi-Fi, Microwave Oven (MWO), Frequency Hopping Spread Spectrum (FHSS), and Continuous Wave (CW).

The internet exit feature enables hosts attached to a VRF in an edge router to reach prefixes that may be reachable over the internet. Since the addresses assigned within a VRF may be non-routable private addresses which cannot be directly used when going to the Internet, the NAT feature is used as a part of the Internet exit solution to provide internet connectivity.

IPv6 multicast routing protocols are used to distribute IPv6 datagrams to one or more recipients. IPv6 PIM builds and maintains multicast routing using reverse path forwarding (RPF) based on the unicast routing table. IPv6 PIM is protocol-independent and can use routing tables consisting of OSPFv3, IPv6 BGP or static routes, for RPF lookup. MLD is used to discover multicast hosts and maintain group membership on a directly attached link.

With this feature, Arista 7050 and 7050X series of switches can now decapsulate IP in IP tunneled packets. When IP in IP decapsulation is configured, incoming packets with an outer IP header having IpProto=4 (IP in IP) and IpDest matching the one configured will be decapsulated, meaning that the outer IP header will be removed from the packet and all subsequent forwarding decisions will be based on the inner IP header.

With this feature, Arista 7050 and 7050X series of switches can now decapsulate IP in IP tunneled packets.

Similar to L4 ports, ACL rules can be configured to filter ingress packets based on their IP length (present in the IPv4

IP Source Guard (IPSG) is a security feature that can help prevent IP spoofing attacks. It filters inbound IP packets

With this feature, IPv4 or IPv6 packets matching a static nexthop-group route can be encapsulated within an IP-in-IP tunnel and forwarded

With this feature, IP packets matching a static Nexthop Group route can be encapsulated within an IP in IP tunnel and

When the next hop of an IP route (hereafter referred to as the dependent route) resolves over another IP route (hereafter referred to as the resolving route), the adjacency information of the resolving route’s FEC is typically duplicated into the dependent route’s FEC. With this feature, we prevent the duplication of the adjacency information. Instead, the dependent route’s FEC points to the resolving route’s FEC, forming a hierarchical FEC for the dependent route.

Support for IPSec connections in a full-cone Network/Port Address Translation (NAT) environment has been added to the Dynamic Path Selection (DPS) setup. DPS optimizes application performance by selecting different paths for various types of traffic. In this configuration, STUN is used to discover the translated IP address of WAN interfaces and export it to BGP.

PKI (Public Key Infrastructure) is a certificate based authentication solution for IPsec protocol.

This feature enables dataplane forwarding of IPv4 traffic on interfaces that are not IPv4 address enabled, but only

TOI 4.17.0F

IPv4 routes of certain prefix lengths can be optimized for enhanced route scale on 7500E, 7280E, 7500R and 7280R

This feature enhances IPv4 VRF scale to 1024 VRFs on AWE-7230R and AWE-7250R, and 64 VRFs on AWE-7220R.On CloudEOS, the VRF scale is as follows

As of EOS 4.15.0F, VRRP is supported in a VRF context. Virtual IP addresses can be reused in different VRF contexts,

IPv6 access lists can be used to filter IPv6 network traffic. Starting EOS 4.15.0F release, we have added support

IPv6 egress ACLs applied to routed interfaces across the same chip on the DCS 7500E and the DCS 7280E series can be

Arista switches use the hashing algorithm to load balance traffic among LAG (Link Aggregation Group) members

This solution allows delivery of both IPv4 and IPv6 multicast traffic in an IP-VRF using an IPv6 multicast in the underlay network. The protocol used to build multicast trees in the underlay network is IPv6 PIM-SSM.

The IPv6 Neighbor Discovery protocol performs Neighbor Unreachability Detection (NUD) in order to determine if two

TOI 4.20.1F

With this feature, IPv4 and IPv6 packets matching a static nexthop-group route can be encapsulated within an IP-in-IP tunnel and forwarded

Policy-Based Routing (PBR) provides the flexibility of routing according to custom-defined policies

With this, IPv6 routes can be configured pointing to a static Nexthop group of 2 types:. Type

TOI 4.17.0F

IPv6 Router Advertisement Consistency Logging, when enabled, allows for notification through syslogging of

TOI 4.20.1F

The document describes an extension of the decap group feature, that allows IPv6 addresses to be configured and used as part of a group. IP-in-IP packets with v6 destination matching a configured decap group IP will be decapsulated and forwarded based on the inner header. That will allow any IP-to-IP packet type to be decapsulated, i.e. IPv4 in IPv4, IPv4 in IPv6, IPv6 in IPv4 and IPv6 in IPv6.

This feature adds IPv6 VRF support to Open Shortest Path First(OSPF) Protocol version 3. It allows for OSPFv3

EOS 4.15.0F is introducing support of IPv6 management capabilities inside a VRF. This means existing management

This feature adds the support for IPv6 unicast in a VRF context in EOS. This entails static routing and dynamic

IS IS adjacency uptime describes the uptime or downtime of neighbors since the last state change.

TOI 4.17.0F

Bidirectional Forwarding Detection(BFD) is a low overhead protocol designed to provide rapid detection of

This feature introduces a way for IS-IS to advertise its IP reachability and SID for loopback interfaces only when routes matching an RCF function are present. One example use-case is to use IS-IS Segment Routing to attract traffic to a router only when routes towards the ultimate destination are present. The RCF function is matched against winning routes in the Unicast RIB (seen with 'show rib route …').

The difference between the two forms of authentication is in the level of security provided. In case of clear text authentication, the password is specified as text in the authentication TLV, making it possible for an attacker to break the authentication by sniffing and capturing IS-IS PDUs on the network.

IS IS Graceful Restart adds support for Restart Signaling for IS IS, IETF RFC 5306. When IS IS is used

TOI 4.20.1F

By default if there's a hostname configured on the switch, it is used as the IS IS hostname. It is also possible to

An IS IS router can be configured as Level 1 2 which can form adjacencies and exchange routing information with both

IS IS Multi Topology support enables an IS IS router to compute a separate topology for IPv4 and IPv6 links in the

This feature enables an Arista switch to run the IS IS routing protocol over a tunnel interface to another IS IS

TOI 4.17.0F

Segment Routing provides mechanism to define end-to-end paths within a topology by encoding paths as sequences of sub-paths or instructions. These sub-paths or instructions are referred to as “segments”. IS-IS Segment Routing (henceforth referred to as IS-IS SR) provides means to advertise such segments through IS-IS protocol.

Level 1 2 routers set attached bit in their Level 1 LSPs to indicate their reachability to the rest of the network. A

SPF Timers can be used in IS-IS to throttle the frequency of shortest-path-first (SPF) computations. In networks with a lot of churn, using these timers will help in containing the effect of network disruptions arising out of frequent SPF runs.